Let $D$ be an integral domain with quotient field $K$ and $\Omega$ a finite subset of $D$. McQuillan proved that the ring $\Int(\Omega,D)$ of polynomials in $K[X]$ which are integer-valued over $\Omega$, that is, $f\in K[X]$ such that $f(\Omega)\subset D$, is a Pr\"ufer domain if and only if $D$ is Pr\"ufer. Under the further assumption that $D$ is integrally closed, we generalize his result by considering a finite set $S$ of a $D$-algebra $A$ which is finitely generated and torsion-free as a $D$-module, and the ring $\Int_K(S,A)$ of integer-valued polynomials over $S$, that is, polynomials over $K$ whose image over $S$ is contained in $A$. We show that the integral closure of $\Int_K(S,A)$ is equal to the contraction to $K[X]$ of $\Int(\Omega_S,D_F)$, for some finite subset $\Omega_S$ of integral elements over $D$ contained in an algebraic closure $\olK$ of $K$, where $D_F$ is the integral closure of $D$ in $F=K(\Omega_S)$. Moreover, the integral closure of $\Int_K(S,A)$ is Pr\"ufer if and only if $D$ is Pr\"ufer. The result is obtained by means of the study of pullbacks of the form $D[X]+p(X)K[X]$, where $p(X)$ is a monic non-constant polynomial over $D$: we prove that the integral closure of such a pullback is equal to the ring of polynomials over $K$ which are integral-valued over the set of roots $\Omega_p$ of $p(X)$ in $\overline K$.
展开▼
机译:令$ D $为商域$ K $和$ \ Omega $为$ D $有限子集的整数域。 McQuillan证明,多项式在$ K [X] $中的环$ \ Int(\ Omega,D)$的整数值超过$ \ Omega $,即,在K [X] $中的$ f \使得f(\ Omega)\ subset D $,且仅当$ D $为Pr \“ ufer时,是Pr \” ufer域。在进一步假设$ D $是整体封闭的情况下,我们通过考虑有限生成的且无扭转的$ D $-代数$ A $的有限集$ S $作为$ D $模块,来推广他的结果,超过$ S $的整数值多项式的环$ \ Int_K(S,A)$,即,超过$ S $的图像的超过$ K $的多项式包含在$ A $中。我们表明,对于整数的某个有限子集$ \ Omega_S $,$ \ Int_K(S,A)$的整数闭包等于对$ \ Int(\ Omega_S,D_F)$的$ K [X] $的收缩包含在$ K $的代数闭包$ \ olK $中的$ D $之上的元素,其中$ D_F $是$ F = K(\ Omega_S)$中$ D $的整数闭包。而且,当且仅当$ D $是Pr \“ ufer时,$ \ Int_K(S,A)$的整数闭包才是Pr \” ufer。通过研究形式为$ D [X] + p(X)K [X] $的拉回获得结果,其中$ p(X)$是超过$ D $的单项非常数多项式:证明这样的回撤的整数闭包等于$ K $之上的多项式环,它们在$ \ overline K $中的根$ \ Omega_p $的$ p(X)$的根集合中是整数值。
展开▼